The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors
نویسندگان
چکیده
The membranes of living cells have been shown to be highly organized into distinct microdomains, which has spatial and temporal consequences for the interaction of membrane bound receptors and their signalling partners as complexes. Fluorescence correlation spectroscopy (FCS) is a technique with single cell sensitivity that sheds light on the molecular dynamics of fluorescently labelled receptors, ligands or signalling complexes within small plasma membrane regions of living cells. This review provides an overview of the use of FCS to probe the real time quantification of the diffusion and concentration of G protein-coupled receptors (GPCRs), primarily to gain insights into ligand-receptor interactions and the molecular composition of signalling complexes. In addition we document the use of photon counting histogram (PCH) analysis to investigate how changes in molecular brightness (ε) can be a sensitive indicator of changes in molecular mass of fluorescently labelled moieties.
منابع مشابه
High glucose condition down-regulates the inhibitory G-protein subunit, Gαi, in pheochromocytoma PC12 cells
Introduction: G-proteins have an important role in the cell signaling of numerous receptors. The situation of G-proteins in health and disease and their critical role in the development of diabetic side effects is an interested scientific field. Here, the changes in the expression of G-protein subunits (Gαi, Gαs and Gβ) were evaluated in hyperglycemic situation of PC12 cells as...
متن کاملIn vitro study of drug-protein interaction using electronic absorption, fluorescence, and circular dichroism spectroscopy
In the near future, design of a new generation of drugs targeting proteins will be required. Considering the complex bond between the drug and protein, the structure and stability of the target protein should be considered. So far, a series of in vitro investigations have been conducted with the aim of predicting drug-biological medium interactions. In these studies, use of spectroscopic method...
متن کاملMeasuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is u...
متن کاملStudies of Interaction between Propranolol and Human Serum Albumin in the Presence of DMMP by Molecular Spectroscopy and Molecular Dynamics Simulation
The interaction between propranolol (PROP) and human serum albumin (HSA) was studied in the presence of dimethyl methylphosphonate (DMMP). DMMP is usually considered as a simulant for chemical warfare agents (CWAs). For this purpose fluorescence quenching, resonance light scattering (RLS), synchronous, three-dimensional fluorescence spectroscopy and molecular dynamics (MD) simulation were emplo...
متن کاملMeasuring ligand-receptor binding kinetics and dynamics using k-space image correlation spectroscopy.
Accurate measurements of kinetic rate constants for interacting biomolecules are crucial for understanding the mechanisms underlying intracellular signalling pathways. The magnitude of binding rates plays a very important molecular regulatory role which can lead to very different cellular physiological responses under different conditions. Here, we extend the k-space image correlation spectrosc...
متن کامل